Inclusive Composite Interval Mapping of QTL by Environment Interactions in Biparental Populations
نویسندگان
چکیده
Identification of environment-specific QTL and stable QTL having consistent genetic effects across a wide range of environments is of great importance in plant breeding. Inclusive Composite Interval Mapping (ICIM) has been proposed for additive, dominant and epistatic QTL mapping in biparental populations for single environment. In this study, ICIM was extended to QTL by environment interaction (QEI) mapping for multi-environmental trials, where the QTL average effect and QEI effects could be properly estimated. Stepwise regression was firstly applied in each environment to identify the most significant marker variables which were then used to adjust the phenotypic values. One-dimensional scanning was then conducted on the adjusted phenotypic values across the environments in order to detect QTL with either average effect or QEI effects, or both average effect and QEI effects. In this way, the genetic background could be well controlled while the conventional interval mapping was applied. An empirical method to determine the threshold of logarithm of odds was developed, and the efficiency of the ICIM QEI mapping was demonstrated in simulated populations under different genetic models. One actual recombinant inbred line population was used to compare mapping results between QEI mapping and single-environment analysis.
منابع مشابه
A modified algorithm for the improvement of composite interval mapping.
Composite interval mapping (CIM) is the most commonly used method for mapping quantitative trait loci (QTL) with populations derived from biparental crosses. However, the algorithm implemented in the popular QTL Cartographer software may not completely ensure all its advantageous properties. In addition, different background marker selection methods may give very different mapping results, and ...
متن کاملInteractions between markers can be caused by the dominance effect of quantitative trait loci.
F(2) populations are commonly used in genetic studies of animals and plants. For simplicity, most quantitative trait locus or loci (QTL) mapping methods have been developed on the basis of populations having two distinct genotypes at each polymorphic marker or gene locus. In this study, we demonstrate that dominance can cause the interactions between markers and propose an inclusive linear mode...
متن کاملGenetic Analysis and QTL Detection on Fiber Traits Using Two Recombinant Inbred Lines and Their Backcross Populations in Upland Cotton
Cotton fiber, a raw natural fiber material, is widely used in the textile industry. Understanding the genetic mechanism of fiber traits is helpful for fiber quality improvement. In the present study, the genetic basis of fiber quality traits was explored using two recombinant inbred lines (RILs) and corresponding backcross (BC) populations under multiple environments in Upland cotton based on m...
متن کاملQuantitative trait locus mapping with background control in genetic populations of clonal F1 and double cross
In this study, we considered five categories of molecular markers in clonal F1 and double cross populations, based on the number of distinguishable alleles and the number of distinguishable genotypes at the marker locus. Using the completed linkage maps, incomplete and missing markers were imputed as fully informative markers in order to simplify the linkage mapping approaches of quantitative t...
متن کاملA Random-Model Approach to QTL Mapping in Multiparent Advanced Generation Intercross (MAGIC) Populations.
Most standard QTL mapping procedures apply to populations derived from the cross of two parents. QTL detected from such biparental populations are rarely relevant to breeding programs because of the narrow genetic basis: only two alleles are involved per locus. To improve the generality and applicability of mapping results, QTL should be detected using populations initiated from multiple parent...
متن کامل